Jump to content

Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024

Fast facts

  • Further publishers

    Bogdan Ionescu, Henning Müller, Ana Maria Dragulinescu, Ahmad Idrissi-Yaghir, Ahmedkhan Radzhabov, Alba Garcia Seco de Herrera, Alexandra Andrei, Alexandru Stan, Andrea M. Storås, Asma Ben Abacha, Benjamin Lecouteux, Benno Stein, Cécile Macaire, Cynthia Sabrina Schmidt, Didier Schwab, Emmanuelle Esperanca-Rodier, George Ioannidis, Griffin Adams, Hugo Manguinhas, Ioan Coman, Johanna Schöler, Johannes Kiesel, Martin Potthast, Maximilian Heinrich, Meliha Yetisgen, Michael A. Riegler, Neal Snider, Pål Halvorsen, Steven A. Hicks, Vajira Thambawita, Vassili Kovalev, Yuri Prokopchuk, Wen-Wai Yim

  • Publishment

    • 2024
    • Volume Advances in Information Retrieval
  • Organizational unit

  • Subjects

    • Applied computer science
    • Information and library sciences,
    • Informationswissenschaft
  • Research fields

    • Medical Informatics (MI)
  • Publication format

    Conference paper

Quote

B. Ionescu, H. Müller, A. M. Dragulinescu, A. Idrissi-Yaghir, A. Radzhabov, A. G. S. de Herrera, A. Andrei, A. Stan, A. M. Storås, A. B. Abacha, B. Lecouteux, B. Stein, C. Macaire, C. M. Friedrich, C. S. Schmidt, D. Schwab, E. Esperanca-Rodier, G. Ioannidis, G. Adams, H. Schäfer, H. Manguinhas, I. Coman, J. Schöler, J. Kiesel, J. Rückert, L. Bloch, M. Potthast, M. Heinrich, M. Yetisgen, M. A. Riegler, N. Snider, P. Halvorsen, R. Brüngel, S. A. Hicks, V. Thambawita, V. Kovalev, Y. Prokopchuk, and W.-W. Yim, “Advancing Multimedia Retrieval in Medical, Social Media and Content Recommendation Applications with ImageCLEF 2024,” in Advances in Information Retrieval, 2024, pp. 44–52.

Content

The ImageCLEF evaluation campaign was integrated with CLEF (Conference and Labs of the Evaluation Forum) for more than 20 years and represents a Multimedia Retrieval challenge aimed at evaluating the technologies for annotation, indexing, and retrieval of multimodal data. Thus, it provides information access to large data collections in usage scenarios and domains such as medicine, argumentation and content recommendation. ImageCLEF 2024 has four main tasks: (i) a Medical task targeting automatic image captioning for radiology images, synthetic medical images created with Generative Adversarial Networks (GANs), Visual Question Answering and medical image generation based on text input, and multimodal dermatology response generation; (ii) a joint ImageCLEF-Touché task Image Retrieval/Generation for Arguments to convey the premise of an argument, (iii) a Recommending task addressing cultural heritage content-recommendation, and (iv) a joint ImageCLEF-ToPicto task aiming to provide a translation in pictograms from natural language. In 2023, participation increased by 67% with respect to 2022 which reveals its impact on the community.

Notes and references

This site uses cookies to ensure the functionality of the website and to collect statistical data. You can object to the statistical collection via the data protection settings (opt-out).

Settings(Opens in a new tab)